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COMPUTATIONS OF STRONGLY SWIRLING FLOWS
WITH SECOND-MOMENT CLOSURES
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Department of Power Mechanical Engineering, National Tsing Hua Uni6ersity, Hsinchu, 30043, Taiwan

SUMMARY

The present study is concerned with simulating turbulent, strongly swirling flows by eddy viscosity model
and Reynolds stress transport model variants adopting linear and quadratic form of the pressure–strain
models. Flows with different inlet swirl numbers, 2.25 and 0.85, were investigated. Detailed comparisons
of the predicted results and measurements were presented to assess the merits of model variants. For the
swirl number 2.25 case, due to the inherent capability of the Reynolds stress models to capture the strong
swirl and turbulence interaction, both the linear and quadratic form of the pressure–strain models predict
the flow adequately. In strong contrast, the k–e model predicts an excessively diffusive flow fields. For
the swirl number 0.85 case, both the k–e and Reynolds stress model with linear pressure–strain process,
show an excessive diffusive transport of the flow fields. The quadratic pressure–strain model, on the
other hand, mimics the correct flow development with the recirculating region being correctly predicted.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

From a theoretical point of view, a two-dimensional swirling flow is considerably more
complicated than two-dimensional plane flows, for additional strains arise due to the az-
imuthal motion, requiring the solution for azimuthal momentum. Indeed, the strain field may
be said to be virtually as complex as any three-dimensional flow. Swirl introduces intense
azimuthal streamline curvature and hence curvature–turbulence interaction affects all six
independent stress components. The effect of the elevated swirl level on the turbulence field
can be exemplified by considering the flow within a circular pipe where the major mean flow
component is the solid body rotation in the circumferential direction. The generations of the
relevant stresses are [1],

P6w= (w2−62)v, (1)

Pww−P66= −6wv, (2)

where v=W/r is the angular velocity. While stress levels are of course not solely determined
by their productions, their values can be expected to be influential. Therefore, the above
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relations tend to restore turbulence to isotropy and thus produce a decay of the turbulence
field.

In practical applications, swirling motion is often employed as a mechanism to further
promote or control mixing between the fuel spray jet and the adjacent air, and on some
occasions, to stabilise the combustion zone due to the presence of the swirl-induced central
recirculation region. Since the central recirculation zone induced by the decay of swirl has
profound effects on flame stabilisation and mixing in combustion systems, a prior knowl-
edge of the flow characteristics is beneficial during the design process.

Due to its importance, numerous numerical studies have been made by various re-
searchers to study the effects of swirl in a variety of combustor geometries [2–7]. The
studies demonstrate that the superiority of stress closures over the k–e model in the
prediction of swirling flows, though the merits of various stress model variants differ at
different swirl levels and swirler type. For strongly swirling flows, for example, the superi-
ority of the stress models [5] is reflected primarily by the lower level of shear stresses due
to the proper representation of the interaction between swirl-induced curvature and stresses,
as indicated earlier. Among the stress models, due to the nature of the convection and
diffusion transport of stresses modelled, it was addressed [4] that the algbraic stress model
(ASM) scheme is not to be used in axisymmetric swirling flows where significant stress
transport processes in the overall Reynolds stress budget prevail. Instead, a Reynolds stress
transport model should be adopted.

While cubic and quadratic pressure–strain models had been applied to further explore
the effects of non-linear pressure–strain models on predicting free-swirling flows, the major-
ity of the confined swirling flow predictions, however, are still limited to the linear models.
The present study aims at investigating the capability of variants of Reynolds stress turbu-
lence models, linear and quadratic pressure–strain models, on strongly swirling flows.
Flows with swirl numbers 2.25 [8] and 0.85 [9] form the basis of the investigations. The
higher swirler number case is designed to examine the models’ response to the interaction
between swirl-induced curvature and turbulence. The second case is adopted to explore the
turbulence models’ capability to simulate flow with the presence of extensive central recircu-
lation region induced by the decay of the swirl intensity.

2. THE COMPUTATIONAL MODEL

2.1. The go6erning equations

The behaviour of the flow is in general governed by the fundamental principles of
classical mechanics expressing the conservation of mass and momentum. The time-averaged
equations for high Reynolds number flow, may be described by the equations (in Cartesian
tensor):
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=0, (3)
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where uiuj is the turbulent flux arising from the time averaging process. The tensorial form
of the momentum equation represents the U, V and rW momentum solved.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 493–508 (1999)



SWIRLING FLOWS WITH SECOND-MOMENT CLOSURE 495

2.2. Turbulence models

In the present application, turbulence is described either by the high Reynolds number k–e

eddy viscosity model [10], used here merely as a datum closure, or by one of high Reynolds
number Reynolds stress closures, as detailed below, all involving six equations for the
independent stresses uiuj and a seventh equation for the isotropic turbulence energy dissipation
e.

The Reynolds stress closure will be expressed in a general form, and this may be written as:

(

(xk

(rUkuiuj)=dij+Pij+eij+fij, (5)

in which dij represents diffusion and is approximated by the simplified gradient–diffusion
model,

dij=
(
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�mt

sk
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n
. (6)

Pij stands for the (exact) stress generation resulting from the interaction between stresses and
strain,

Pij= −ruiuk

(Uj

(xk

−rujuk

(Ui

(xk

(7)

and −2/3rdije models stress dissipation, eij, on the assumption that this process is isotropic
and may thus be characterised by the dissipation of turbulence energy e.

The focal point of Reynolds stress model is the pressure–strain term fij, which identifies
pressure–strain interaction and consists of three model components, representing respectively,
‘return to isotropy’, ‘isotropisation of mean strain and turbulence correlation’ and ‘redistribu-
tive effects arising from wall reflection of pressure fluctuations’. Variants of the pressure–
strain variants were investigated.

The first stress model closure variant (IPCM) adopted here is that of Fu et al. [3]. This linear
model is termed as the basic model by Launder and his co-workers, which may be written as:
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where

Pij= −ruiuk
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.

ni is the wall normal unit vector in the direction i and f=Cm
0.75k1.5/(eky) with y being the

distance to the closest wall, taken along the co-ordinate line normal to the wall.
The rate of turbulence energy dissipation e, appearing in the stress equations is determined

from its own transport equation, which takes the form,
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where Ce1, Ce1 and se are 1.44, 1.92 and 1.3 respectively.
Instead of the linear pressure–strain model, a second variant (SSG) proposed by Speziale et

al. [11] employs quadratic form

fij1= − (3.4e+1.8Pk)bij+4.2e
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When adopting the SSG model, the value of Ce2 in the e equation is modified to be 1.83 [11].
It should be pointed out that the SSG model does not contain a wall reflection term explicitly.

2.3. Numerical algorithm

This scheme solves discretised versions of all equations on a staggered finite volume
arrangement [12]. A staggered storage is adopted not only for the velocity components but also
for the shear stresses—an arrangement that aids stability by ensuring a strong numerical
coupling between stresses and primary strains. The principle of mass flux continuity is imposed
indirectly via the solution of pressure correction equations according to the SIMPLE [13]
algorithm. The flow property values at the volume faces contained in the convective fluxes that
arise from the finite volume integration process are approximated by the quadratic upstream
weighted interpolation scheme QUICK [14]. The numerical meshes, of sizes 90×60 and
120×90, are non-uniform both in the x- and y-directions. Initial tests on the influences of the
convection schemes revealed that the differences between the second-order QUICK and the
first-order hybrid scheme were negligible small. It was also found that the two grids generate
exactly the same results. Therefore, the mesh employed will be deemed to be satisfactory and
further refinements of the mesh will not be beneficial.

Though the present case is a steady state solution, it was found that using a time marching
process will enhance stability, especially when stress models are employed. The solution
process consists of a sequential algorithm in which each of the 11 sets of equations, in
linearised form, are solved separately by application of an alternate direction tri- or penta-di-
agonal line implicit solver. Convergence was judged by monitoring the magnitude of the
absolute residual sources of mass and momentum, normalised by the respective inlet fluxes.
The solution was taken as having converged when all above residuals fell below 0.01%.

3. BOUNDARY CONDITIONS

At the wall, the tangential velocity component U was assumed to vary logarithmically between
the semi-viscous sublayer, at y 6+ =11.2, and the first computational node lying in the region
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30By+B100. This treatment yielded boundary conditions for the shear stresses and also
permitted the volume-averaged near-wall generation rates of the tangential normal stresses to
be computed over the associated near-wall finite volumes. (The generation of the wall normal
intensity was assumed negligibly small) The linear variation of the turbulent length scale,
L=ky/Cm

3/4, in the log-law region, together with e=k3/2/L, and the invariant value e=2mlk6/
(ry 62) in the viscous sublayer, allowed the volume-averaged dissipation rate to be determined.
This same L-variation was also used to prescribe explicitly the dissipation rate at the near-wall
computational node, serving as the boundary condition for inner-field cells.

4. RESULTS AND DISCUSSIONS

4.1. Sudden expanding pipe flow

Before proceeding to the discussion of swirling flows, it is instructive to focus first on the
performances of variants of turbulence models on the non-swirling sudden expanding pipe
flow. The pipe expansion ratio is 1.5. The inlet velocity (Uin) is known to be 19.2 m s−1,
corresponding to a Reynolds number of 1.25×105 based on the inlet pipe diameter, and its
inlet mean and turbulence quantities were taken from the experiment of Ahmed and Nejad
[15]. Experimental data are available from X/H=0.38 step heights downstream of the sudden
expansion at which point the numerical simulation starts.

The capability of different models can be observed by reference to Figure 1, showing
comparisons between predicted and measured axial velocity along the centreline. This indicates
that the SSG model returned the best axial velocity development, though the difference among
the stress models at regions X/HB10 is marginal. The k–e model predicted a more rapid
development of axial velocity, indicating a more diffusive flow field simulated and this can be
further affirmed by reference to Figure 2, which shows the predicted mean and turbulence

Figure 1. Centreline axial velocity—sudden expanding pipe.
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Figure 2. Comparisons of predictions and measurements at X/H=2—sudden expanding pipe.

quantities at X/H=2. Regarding the turbulence quantities, the SSG model also exhibited
better results, a reflection of the better predicted mean flow profiles, than the rest of the
models.

4.2. So et al.’s strongly swirling flow S=2.25

This case is designed to examine the interaction between swirl-induced curvature and
turbulence. Experimental data had been obtained by So et al. [8]. This consists of a pipe into
which an annular swirling stream is introduced together with a non-swirling central jet. The
latter is introduced to inhibit extensive reverse flow (vortex breakdown) along the centreline.
The swirl number, S,

S=

& ro

0

UWr2 dr

ro
& ro

0

U2r dr
(14)

for this case is 2.25, where ro is the radius of the pipe and U and W are the axial and tangential
velocity respectively. According to the rule of thumb proposed by Squire [16], a subcritical
state is reached when the maximum swirl velocity to the averaged streamwise velocity exceeds
unity. It was found by Escudier and Keller [17] that subcritical state flow is highly sensitive to
the perturbation far downstream. In the present case, the velocity ratio is well above unity and
the flow is thus subcritical. Therefore, in the present computations, the exit axial velocity is
prescribed from measurements to avoid the predictive uncertainties.

A subcritical state appears to reflect a strong decay in turbulent mixing, and a corresponding
dominance of convective features, making the governing equations nearly hyperbolic in nature.
This is confirmed from the measured axial and tangential velocity, shown in Figures 3 and 4.
Stress model predictions and experimental data show the shape of the mean flow profiles to
remain similar over the whole length of domain, and this implies that the mixing is weak. The
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Figure 3. Axial velocity distributions—So et al.’s case.

k–e predictions show, on the contrary, an excessively radial diffusive transport, with a faster
decay of the centreline axial velocity and early return of solid body rotation of the swirling
motion.

Figure 4. Tangential velocity distributions—So et al.’s case.
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Figure 5. uu distributions—So et al.’s case.

Although the stress model predictions indicate a lower level of shear stresses, no measured
shear stresses are available to support the simulations. Both the measurements and predictions
show a nearly isotropic normal stresses. Among the predictions, the stress models return a
lower level of normal stresses and agree with the measurements, shown in Figures 5 and 6. The

Figure 6. ww distributions—So et al.’s case.
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Figure 7. Centreline axial velocity distributions—Kitoh’s case.

superiority of the stress models is rooted in their ability to return the depression of the shear
stress levels in response to the swirl-related strain at this high level of swirling flow, and this
mechanism is briefly discussed earlier. It should be noted that in the present case the difference
between the linear and quadratic pressure–strain model is not significant.

4.3. Kitoh’s strongly swirling flow S=0.85

The present case considers swirling flow in a straight circular pipe with a free-vortex-type
swirling inlet [9]. The swirl intensity, V,

V=
2p

& ro

0

UWr2 dr

pro
3Um

2 (15)

of the present case is 0.97, where U, W and Um are the axial, tangential and bulk velocity
respectively, r and ro are the radial position and pipe radius. This swirl intensity corresponds
to a swirl number of 0.85. Due to the presence of the high swirl intensity at the inlet and the
absence of the central jet as observed in the previous case, extensive reverse flow is present in
most of the flow domain. Experimental data are available from X/do=5.7 pipe diameter
downstream of the test section at which point the numerical simulation starts. It should be
pointed out that the inlet plane straddles across the recirculation zone.

The most dramatic effect of the model’s performance can be referred to the centreline axial
velocity distributions, shown in Figure 7, and the axial and tangential velocity profiles, shown
in Figures 8 and 9. It can be clearly seen that both the k–e and IPCM models predict
overexcessively diffusive profiles. In strong contrast, both the measurements and SSG model
indicate an extended region of recirculation zone. The excessive nature of k–e model in
strongly swirling flow is consistent to what was observed previously. However, the IPCM
model’s performance needs to be further investigated.
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Figure 8. Axial velocity distributions—Kitoh’s case.

The cause of this behaviour can be traced back to the formulation of the modelled form of
pressure–strain process. The pressure–strain term of u6 of the SSG model can be expressed in
terms of that of IPCM and is as,

Figure 9. Tangential velocity distributions—Kitoh’s case.
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Figure 10. u6 distributions—Kitoh’s case.
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where the wall reflection terms of IPCM have been neglected. It should be noted that terms B,
C and the production related part of term A do not exist in the linear pressure strain models.

The reduced level of the shear stress predicted by the SSG model, shown in Figure 10 at
X/do=12.3 can be traced back to the formulations of the pressure–strain process. It is clear
that the major terms A, D act as extra sink terms, relative to IPCM model, for predicted u6
adopting SSG model. Across the non-equilibrium shear layer where the production term Pk is
much higher than the turbulence dissipation rate e, this makes the effect of term A even more
pronounced. This reduced level of shear stresses, predicted by SSG and shown in Figures
10–12, is consistent with what was observed earlier of the mean velocity profiles.

Figures 13–15 show the predicted normal stresses. It is not surprising to observe that SSG
predicts a lower level of 62 at X/do=12.3 and 19. This is consistent with what was observed
in the distributions of u6 predicted by the SSG model. As was observed in the u6 equation, the
production related term in the SSG model seems to have profound effect on the stresses. By
examining the pressure–strain term of the normal stresses, the SSG model gives
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Figure 11. uw distributions—Kitoh’s case.
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It can be observed that the production related term will be influential in regions where the
ratio of Pk/e is large. Therefore, a more isotropic stress field predicted by SSG is expected in
regions across the shear layer where the strain rate is high.

5. CONCLUSION

Computations of strongly swirling flows were performed by k–e model and variants of
Reynolds stress transport model with linear (IPCM) and quadratic (SSG) form of the
pressure–strain models. Comparisons of the predictions with measurements indicated that for
the S=2.25 case, due to the inherent capability of the Reynolds stress models to capture the
strong swirl and turbulence interaction, both the linear and quadratic form of the pressure–
strain models predict the flow adequately. In strong contrast, the k–e model predicts an
excessively diffusive flow fields. For the swirl number 0.85 case, both the k–e and Reynolds
stress model with linear pressure–strain process, show an excessively diffusive transport of the
flow fields. The correct axial flow development predicted by SSG was attributed to the lower
level of u6 predicted by the models, and this could be traced back to the modelled form of the
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Figure 12. 6w distributions—Kitoh’s case.

pressure–strain term, after examining the formulations of the pressure–strain models. Overall,
the SSG model is found to produce lower level of turbulence in regions of high shear and this
agrees with what the measurements show.

Figure 13. uu distributions—Kitoh’s case.
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Figure 14. 66 distributions—Kitoh’s case.

Figure 15. ww distributions—Kitoh’s case.
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APPENDIX A. NOMENCLATURE

the Reynolds stress anisotropy tensorbij

Ce1, Ce2 turbulence model coefficient
convection tensor of Reynolds stressesCij

diffusion tensor of Reynolds stressesdij

dj jet diameter
pipe diameterdo

step height of sudden expansionH
k turbulent kinetic energy
L turbulence length scale

unit vectorni

Pij production tensor of Reynolds stresses
radial distancer
pipe radiusro

S swirl number
U axial velocity

inlet axial velocityUin

Uj axial jet velocity
Um axial bulk velocity

Reynolds stress tensoruiuj

radial velocityV
axial direction distanceX

y+ dimensionless distance in wall function
thickness of the viscous sublayery6
tangential velocityW

Greek letters

dij Kronecker delta
turbulent dissipation ratee

eij turbulent dissipation rate tensor
m viscosity

pressure–strain tensorfijl, fij2, fijw

mean densityr

Prandtl numbers

angular velocityv

swirl intensityV

Subscripts

i, j, k tensorial direction indices
in flow inlet

laminarl
t turbulent
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